منابع مشابه
Circadian Rhythms in Cyanobacteria.
Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organism...
متن کاملCircadian rhythms of superhelical status of DNA in cyanobacteria.
The cyanobacterium Synechococcus elongatus expresses robust circadian (daily) rhythms under the control of the KaiABC-based core clockwork. Unlike eukaryotic circadian systems characterized thus far, the cyanobacterial clockwork modulates gene expression patterns globally and specific clock gene promoters are not necessary in mediating the circadian feedback loop. The oscilloid model postulates...
متن کاملKaiC intersubunit communication facilitates robustness of circadian rhythms in cyanobacteria
The cyanobacterial circadian clock is the only model clock to have been reconstituted in vitro. KaiC, the central clock component, is a homohexameric ATPase with autokinase and autophosphatase activities. Changes in phosphorylation state have been proposed to switch KaiC's activity between autokinase and autophosphatase. Here we analyse the molecular mechanism underlying the regulation of KaiC'...
متن کاملCircadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria.
We have used a luciferase reporter gene and continuous automated monitoring of bioluminescence to demonstrate unequivocally that cyanobacteria exhibit circadian behaviors that are fundamentally the same as circadian rhythms of eukaryotes. We also show that these rhythms can be studied by molecular methods in Synechococcus sp. PCC7942, a strain for which genetic transformation is well establishe...
متن کاملCircadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria.
Organisms are adapted to the relentless cycles of day and night, because they evolved timekeeping systems called circadian clocks, which regulate biological activities with ~24-hour rhythms. The clock of cyanobacteria is driven by a three-protein oscillator composed of KaiA, KaiB, and KaiC, which together generate a circadian rhythm of KaiC phosphorylation. We show that KaiB flips between two d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microbiology and Molecular Biology Reviews
سال: 2015
ISSN: 1092-2172,1098-5557
DOI: 10.1128/mmbr.00036-15